Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Technical Paper

Effects of Spray Droplet Size and Velocity Distributions on Emissions from a Single Cylinder Biofuel Engine

2016-04-05
2016-01-0994
Biodiesel made from Jatropha oil by transesterification process has viscosity and other important physical properties comparable to mineral diesel hence it can be used as an alternate fuel in conventional diesel engines. It is important to investigate the spray characteristics of biodiesel because emissions from the engines are dependent on fuel atomization process and resulting fuel-air mixing. This study focuses on the Jatropha biodiesel spray investigations using Phase Doppler Interferometry (PDI) for measurement of various microscopic spray parameters such as Sauter mean diameter (SMD) and spray droplet size and velocity distributions. The spray and engine experiments were carried out for Jatropha biodiesel (JB100) and their 20% blends (JB20) with mineral diesel as baseline. Fuel injection pressure during the spray experiments was maintained at 200 bars for all tests, quite similar to small horse power agricultural engines, and the fuel injection quantity was varied.
Technical Paper

Macroscopic and Microscopic Spray Characteristics of Diesel and Karanja Biodiesel Blends

2016-04-05
2016-01-0869
Fuel injection pressure (FIP) is one of the most important factors affecting diesel engine performance and particulate emissions. Higher FIP improves the fuel atomization, which results in lower soot formation due to superior fuel-air mixing. The objective of this spray study was to investigate macroscopic and microscopic spray parameters in FIP range of 500-1500 bar, using a solenoid injector for biodiesel blends (KB20 and KB40) and baseline mineral diesel. For these test fuels, effect of ambient pressure on macroscopic spray characteristics such as spray penetration, spray area and cone angle were investigated in a constant volume spray chamber (CVSC). Microscopic spray characteristics such as velocity distribution of droplets and spray droplet size distribution were measured in the CVSC at atmospheric pressure using Phase Doppler Interferometry (PDI).
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

Experimental Investigation on Intake Air Temperature and Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Homogeneous Charge Compression Ignition Engine

2011-04-12
2011-01-1183
Due to the increasingly stricter emission legislations and growing demand for lower fuel consumption, there have been significant efforts to improve combustion efficiency, while satisfying the emission requirements. Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI, fully homogeneous charge HCCI combustion can be realized only in a limited operating range. Control of HCCI engines to obtain the desirable operation requires understanding of how different charge variables influence the cyclic variations in HCCI combustion. Under certain operating conditions, HCCI engines exhibit large cyclic variations in ignition timing. Cyclic variability ranging from stochastic to deterministic patterns can be observed. One important design goal for engine development is to minimize cyclic variability.
Technical Paper

CI/PCCI Combustion Mode Switching of Diesohol Fuelled Production Engine

2017-03-28
2017-01-0738
Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
Technical Paper

An Experimental Investigation of Combustion, Emissions and Performance of a Diesel Fuelled HCCI Engine

2012-01-09
2012-28-0005
Homogeneous charge compression ignition (HCCI) is an advanced combustion concept that is developed as an alternative to diesel engines with higher thermal efficiency along with ultralow NOx and PM emissions. To study the performance of this novel technique, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode while other cylinder operates in conventional CI mode. The quality of homogeneous mixture of air and fuel is the key feature of HCCI combustion. Low volatility of diesel is a major hurdle in achieving HCCI combustion because it is difficult to make a homogeneous mixture of air and fuel. This problem is resolved by external mixture preparation technique in uses a dedicated diesel vaporizer with an electronic control system. All the injection parameters such as fuel quantity, fuel injection timing, injection delay etc., are controlled by the injection driver circuit.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

Macroscopic Spray Parameters of Karanja Oil and Blends: A Comparative Study

2012-01-09
2012-28-0028
Diesel engines are very efficient prime movers in their power range. Fuel is directly injected into the combustion chamber. Performance and emission characteristics of diesel engines are highly influenced by the fuel spray parameters and atomization of the injected fuel. As the emission regulations become stringent, it is very important to optimize the combustion in internal combustion engines for different fuels including alternative fuels. Spray visualization using optical techniques play a very important role to analyze macroscopic spray parameters and fuel atomization behavior. In the present experimental study, an important alternative CI engine fuel, Karanja oil and its blends with diesel have been investigated for their spray parameters and fuel atomization relative to mineral diesel. These parameters are different for the two fuels because of difference in the viscosity and density of the fuels.
Technical Paper

Experimental Investigations of Gasoline HCCI Engine during Startup and Transients

2011-12-15
2011-01-2445
The homogeneous charge compression ignition (HCCI) combustion process is capable of providing both high ‘diesel-like’ efficiencies and very low NOx and particulate emissions. However, among several technical challenges, controlling the combustion phasing, particularly during transients is a major issue, which must be resolved to exploit its commercial applications. This study is focused on the experimental investigations of behavior of combustion timing and other combustion parameters during startup and load transients. The study is conducted on a gasoline fuelled HCCI engine by varying intake air temperature and air-fuel ratio at different engine speeds. Port fuel injection technique is used for preparing homogeneous mixture of gasoline and air. For fueling startup transient test, fuel injection was turned off, and the engine was motored for several minutes until the fire-deck, intake and exhaust temperatures stabilized.
Technical Paper

Experimental Investigation of Close-Loop Control of HCCI Engine Using Dual Fuel Approach

2013-04-08
2013-01-1675
Homogeneous Charge Compression Ignition (HCCI) offers great promise for excellent fuel economy and extremely low emissions of NOx and PM. HCCI combustion lacks direct control on the "start of combustion" such as spark timing in SI engines and fuel injection timing in CI engines. Auto ignition of a homogeneous mixture is very sensitive to operating conditions of the engine. Even small variations of the load can change the timing from "too early" to "too late" combustion. Thus a fast combustion phasing control is required since it sets the performance limitation of the load control. Crank angle position for 50% heat release is used as combustion phasing feedback parameter. In this study, a dual-fuel approach is used to control combustion in a HCCI engine. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Two different octane fuels (methanol and n-heptane) are used for the study.
Technical Paper

Laser Ignition of Single Cylinder Engine and Effects of Ignition Location

2013-04-08
2013-01-1631
Laser is emerging as a strong contender as an alternative ignition source for internal combustion (IC) engines. Short laser pulses of few nanoseconds duration delivered by a Q-switched laser are focused by a lens inside the engine cylinder containing combustible fuel-air mixture. If the peak intensity at the focal point exceeds threshold intensity level, breakdown of combustible gases occurs, which leads to plasma formation. If the energy of the spark generated by plasma is high enough, the mixture ignites. In this investigation, laser ignition (LI) was performed in a single cylinder engine at constant speed and wide open throttle conditions using CNG as fuel. Combustion behavior was recorded using a high speed data acquisition system. For laser ignition of the engine, a laser spark plug was designed and manufactured. Laser spark plug consists of combination of lenses and optical windows.
Technical Paper

Comparative Evaluation of Turbochargers for High Horsepower Diesel-Electric Locomotives

2013-04-08
2013-01-0930
Indian Railways have a fleet of high-horsepower diesel-electric locomotives rated at 2310 kW. These high horsepower diesel-electric locomotives have evolved from original design of 1940 kW locomotives. Adoption of new design turbochargers was essential for this upgrading efforts and a series of new design turbochargers were evaluated on the engine test-bed before their use on the diesel locomotives. The objective was to increase engine power output, improve fuel efficiency and limit thermal loading. Test-bed evaluation of different turbochargers was carried out for comparing five different turbochargers. Each turbocharger had different size nozzle ring, diffuser, turbine blade assembly, impeller and inducer. The compressor maps of turbochargers were used to plot the engine load lines and to calculate surge margins. The tests involved measuring critical parameters for various combinations of engine speed and load for every turbocharger.
Technical Paper

Effect of Multiple Injections on Particulate Size-Number Distributions in a Common Rail Direct Injection Engine Fueled with Karanja Biodiesel Blends

2013-04-08
2013-01-1554
Use of alternative fuels, and reduction of particulate and NOx emissions are major challenges for making diesel engines environmentally benign. Measures adopted for reducing gravimetric particulate emissions necessarily always do not reduce particulate number concentration, which is strongly related with adverse health effects. Current emission norms in some parts of the world limit particulate number concentration along with particulate mass. In this scenario, it becomes important to investigate effect of fuel injection parameters and fuel injection strategies such as pilot injections on particulate size-number distribution. A single cylinder research engine is used to evaluate the effect of different fuel injection strategies and injection timings (for pilot and main injections) on particulate size-number distribution and total particulate numbers.
Technical Paper

Numerical and Experimental Investigation of Oil Jet Cooled Piston

2005-04-11
2005-01-1382
Thermal loading of diesel engine pistons has increased dramatically in recent years due to applications of various advanced technologies to meet low emission and high power requirements. Control of piston temperatures by cooling of pistons has become one of the determining factors in a successful engine design. The pistons are cooled by oil jets fired at the underside from the crankcase. Any undesirable piston temperature rise may lead to engine seizure because of piston warping. However, if the temperature at the underside of the piston, where oil jet strikes the piston, is above the boiling point of the oil being used, it may contribute to the mist generation. This mist significantly contribute to the non-tail pipe emissions in the form of unburnt hydrocarbons (UBHC's), which has unfortunately not been looked into so seriously, as the current stress of all the automobile manufacturers is on meeting the tail pipe emission legislative limits.
Technical Paper

Evaluation of Steel Cap Piston for Upgradation of Diesel Electric Locomotives for Indian Railways

2005-04-11
2005-01-1645
This paper deals with the evaluation of steel cap pistons for up-gradation of diesel electric locomotives for Indian Railways. These engines are four stroke, medium speed compression ignition engines (CR 12.5: 1) with output of 121 kW per cylinder on series 1 and 167 kW per cylinder on series 2. The series 1 engine uses single piece aluminum pistons, with rating of 0.295 kW/cm2 of piston crown area. A higher version of the series 1 engine with higher fuel efficiency and improvement in lube oil consumption was developed. As part of this improvement program, a composite steel cap piston with forged aluminum skirt was used. The whole engine up-gradation kit including the higher capacity turbocharger, higher fuel delivery pressure fuel pump, modified cam shaft, larger after-cooler along with the steel cap piston were evaluated for performance.
Technical Paper

Performance Evaluation of a Biodiesel (Rice Bran Oil Methyl Ester) Fuelled Transport Diesel Engine

2005-04-11
2005-01-1730
This experimental study was undertaken to investigate the use of vegetable oil derivatives to substitute mineral diesel fuel. Straight vegetable oils pose some problems like injector coking, carbon deposits etc., when used as a fuel in an engine. These problems are due to high viscosity, low volatility and polyunsaturated character of vegetable oils. Transesterified vegetable oil derivative called “biodiesel” appear to be most convenient way of utilizing vegetable oil as a substitute fuel in diesel engines. In present investigation, rice bran oil (non-edible) was transesterified to methyl ester and reaction conditions for transeterifcation process for rice bran oil were optimized. Various properties like viscosity, density, flash point of the biodiesel thus prepared are comparable to diesel and found to be in acceptable range as per ASTM norms (ASTM D6751). Experimental investigations were carried out on a four stroke, four cylinders, transportation DI diesel engine.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
Technical Paper

Combustion Characteristics of Rice Bran Oil Derived Biodiesel in a Transportation Diesel Engine

2005-10-23
2005-26-354
The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine and they would not require significant modification of existing engine hardware. Methyl ester of rice bran oil (ROME) is derived through transesterification process. Previous research has shown that ROME has comparable performance, lower bsfc in comparison to diesel. There was reduction in the emissions of CO, HC, and smoke but NOx emissions increased. Experimental investigations have been carried out to examine the combustion characteristics in a direct injection transportation diesel engine running with diesel, and 20% blend of rice bran methyl ester with diesel.
X